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High-energy effects at low momentum transfer, both in the direct and in the crossed channel, are intro
duced into a self-consistent calculation of low-energy TT-W scattering. These effects are assumed to be domi
nated by top-level Regge trajectories. The general method consists of combining the generalized Chew-
Mandelstam and Ball-Wong techniques with self-consistency. It can be extended to complex angular 
momenta and thereby used to calculate the parameters of the assumed Regge trajectories. A rough self-
consistent calculation gives a mass of 712 MeV and a half-width of about 75 MeV for the p meson, and a 
value of 15 mb for the total cross section at very high energies. 

reasonable assumption, at least for calculating the pa
rameters of the p meson. On the other hand, Singh and 
Udgaonkar12 found that high-energy contributions to 
the fixed-energy dispersion relation are important in 
a self-consistent calculation of the N*. These contribu
tions were taken into account by using the strip ap
proximation, which relates them to low-energy reso
nances in the direct channel. Thus one is able to make 
a low-energy calculation which includes high-energy 
effects in the crossed channel without having to calcu
late the high-energy amplitude explicitly. This pro
cedure has also been applied to TT-A scattering by 
der-Sarkissian13 and to a self-consistent calculation of 
the deuteron by Bose and der-Sarkissian.14 

The main difficulty with the Singh-Udgaonkar ap
proximation is the assumption that the interiors of the 
double-spectral function regions are unimportant, an 
approximation which is hard to justify. Moreover, it 
has been found that one cannot get a reasonable P-wave 
resonance in the TT-TT problem if one uses this method, 
at least if the approximations of I are used. For these 
reasons, we shall take high-energy effects into account 
simply by assuming that the high-energy crossed-
channel absorptive parts are dominated by top-level 
Regge poles15 in the direct channel. This was, in fact, 
suggested, in I and partially used in Ref. 10. I t may 
be regarded as being in some sense a Regge-pole Singh-
Udgaonkar approximation, since it also relates high-
energy contributions in the crossed channel to low-
energy resonances in the direct channel. Moreover, if 
one makes certain simplifying assumptions, it leads to 
a simple result which, although it is quite different 
from the Singh-Udgaonkar formula for TT-TT scattering, 
would reduce to that formula if the scattering particles 
were sufficiently massive. 

Finally, high-energy direct-channel inelastic effects 
are also included in the present calculation. Here one 

12 V. Singh and B. M. Udgaonkar, Phys. Rev. 130, 1177 (1963). 
13 M. der-Sarkissian, (unpublished). 
14 S. K. Bose and M. der-Sarkissian (unpublished). 
15 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. 

Rev. 126, 2204 (1962); G. F. Chew and S. C. Frautschi, Phys. 
Rev. Letters 7, 394 (1961); 8, 41 (1962); G. F. Chew, S. C. 
Frautschi, and S. Mandelstam, Phys. Rev. 126, 1202 (1962); R. 
Blankenbecler and M. L. Goldberger, ibid. 126, 766 (1962). 
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I. INTRODUCTION 

TH E R E have been several "bootstrap' ' methods 
proposed for calculating the TT-TT amplitude from 

the requirements of analyticity, elastic unitarity, and 
crossing symmetry.1-9 Of these, only the methods of 
Chew and Frautschi5 and of Chew9 are designed to 
calculate the high-energy and low-energy amplitudes 
simultaneously, although numerical calculations have 
not yet been attempted in either case. In addition, an 
attempt was made to extend the method of81 to make 
high-energy calculations.10 However, many high-energy 
effects were left out in that calculation. 

In the present paper, a more general extension of the 
method of I is given. The original method consisted 
of setting up an effective-range formula, whose pa
rameters were determined by requiring that its value 
and derivatives at a suitable matching point be the 
same as those given by a fixed-energy dispersion rela
tion.11 The crossed-channel absorptive part coming 
into this dispersion relation was then approximated by 
the contributions of a few partial waves, and it was 
required that the assumed parameters of these waves 
be equal to the calculated values. Such a calculation 
is capable of giving a self-sustaining P-wave resonance. 

Since only a few partial waves were retained, high-
energy effects were completely ignored in the above 
calculation. I t was argued in I that such effects would 
not make much difference. We shall see that this is a 

* A portion of this work was completed while the author was 
a visitor at Brookhaven National Laboratory, Upton, New York, 
Summer, 1963. 

I G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960); 
Nuovo Cimento 19, 752 (1961). 

»M. Cini and S. Fubini, Ann. Phys. (N. Y.) 3, 358 (1960). 
3 A. V. Efremov, V. A. Meshcheryakov, D. V. Shirkov, and 

H. Y. Tzu, Nucl. Phys. 22, 202 (1961). 
4 J. W. Moffat, Phys. Rev. 121, 926 (1961); B. H. Bransden 

and J. W. Moffat, Nuovo Cimento 21, 505 (1961); Phys. Rev 
Letters 8, 145 (1962). 

s G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961). 
6 F . Zachariasen, Phys. Rev. Letters 7, 112 and 268 (1961); 

F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962). 
7 D . Y. Wong, Phys. Rev. 126, 1220 (1962). 
8 L . A. P. Balazs, Phys. Rev. 128, 1939 (1962); hereafter 

referred to as I. 
• G. F. Chew, Phys. Rev. 129, 2363 (1963). 
10L. A. P. Balazs, Phys. Rev. Letters 10, 170 (1963). 
II This is a generalization of a technique first used by J. S. 

Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961). 
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assumes that the elastic amplitude is dominated by 
Regge poles in the crossed channel. The inclusion of 
these effects results in a narrowing of the p resonance. 

II. THE GENERAL APPROACH 

We shall begin by reviewing the general approach 
given in I, using, however, a somewhat different 
partial-wave amplitude. Specifically, for a given angular 
momentum I and isotopic spin / , we shall take 

HSM^v-Kv-VKY-'ASiv), (1) 

where v— (s/4) — 1, s is the square of the total energy 
in the barycentric system with pion m a s s = l , and VR 
is a quantity we shall specify later. The function A i*(v) 
is the usual TT-TT partial-wave amplitude1 for which 
unitarity gives 

imD^M]-1^ -LWiv+m^Ri'M, (2) 
where RiI(v) = \ in the elastic region. The amplitude 
HiT(v) is chosen so as to give the correct threshold 
and asymptotic behavior for both physical and un-
physical Z.16 Moreover, it does not have the kinematical 
branch point at v=0 which is present in AiT(v) when 
I is noninteger. I t does have a kinematical singularity 
at V=VKI but we shall see later that this does not give 
rise to any difficulties if VR is chosen suitably. 

If one now makes the usual N/D decomposition,1 

27,'M = W W / A 7 M , (3) 
one has, using Eq. (2) and normalizing DiT(v) to 
unity at J>= *>o, 

D%*\v) = \ / dv'l 
T Jo \v'—VK' 

i/'8 \1/2 Rfb'Wiv') 
X 

v'6 y 

' '+1/ and 
1 

7T 

(v'~v0)(v'-v) 
(4) 

-1 ImJ37( / )ZV(i / ) 
dv' 

-1 M f ^ W M 
dv' 

1 f^dxImHSi-x-^DSi-x-1) 

\-\-xv TV J o 

(5) 

where x= — v~x, XL=—VL~\ and VL> — 9. If one now 
approximates the kernel in the second integral by 
means of an interpolation formula 

1 n Gi(x) 

^E : 
l-\-xv *=i \-\-XiV 

(6) 

16 This is not true of Ai!(v) for unphysical /, which is why 
HiT(p) was introduced. For large physical /, however, it is prob
ably better to use AiJ{v) and proceed as in I. 

where the Xi are chosen so as to make the approximation 
as good as possible, one obtains 

1 r~l JmHfiv'Wiv') « fi 
Nl

I(v) = ~ f dv' 
K J vL 1 X{ 

•• ( V ) 

The last term has the same form as an w-pole formula. 
For given ImHiT(v) and RiT(v), Eqs. (4) and (7) can 

now be solved to give HiT(v) through Eq. (3) in terms 
of the constants /»-. These can then be determined by 
requiring that this amplitude and (n—1) of its deriva
tives be the same as that given by 

AiI(v) = - [ dt'At\t'Mv+V)QiU+-\ (8) 
TTVJA \ 2vJ 

at some matching point ^ in the region VL<P<0. 
Equation (8) is obtained by taking a fixed-s dispersion 
relation for the total amplitude AI{s^t) and projecting 
out the Zth partial wave. I t can also be used for un
physical I}1 The function At1 is given by 

J'=0 
(9) 

with 

II — 

i 1 5 
3 l 3 
1 1 5 
3 2 6 
1 1 1 

. 3 2 6^ 

Here At
T(t,s) is the absorptive part in the t channel, 

where / = — 2v{\ — cos0) and 6 is the scattering angle in 
the direct channel. Equations (1) and (8) can also be 
used to obtain ImHfiv), which was needed to solve 
Eqs. (4) and (7). 

If we now take VK<VL, we can see why the kine
matical singularity at v=vK does not cause any diffi
culty. This singularity is either a pole or a branch 
point, whose cut can be taken to run to — oo. In either 
case the net result is to modify ImHiT(v) in the region 
V<VL, where its explicit form is not needed. 

III. THE ABSORPTIVE PARTS IN THE 
CROSSED CHANNELS 

To evaluate Eq. (8), we shall split the integral into 
two parts, 

Al
I(v) = Al

I^(v)+Al
I^(v)y (10) 

where 

^ I / C L ) W = _ f dt>itivMv+1))Ql(1+L\ (11) 

AlnH){v) = _ f dt> At\t'Mv+l))QiU+--\ (12) 
TTV J tD \ 2v/ 

17 M. Froissart (report to the La Jolla Conference on Theo
retical Physics, June 1961); V. N. Gribov, Zh. Eksperim. i Teor. 
Fiz. 41, 667 and 1962 (1961) [translation: Soviet Phys.— JETP 
14, 478 and 1395 (1962)]. 

file:///-/-xv
file:///-/-XiV
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Here ID is a separation point in the t channel between 
the low-energy region which is dominated by reso
nances and the high-energy region which is dominated 
by Regge poles in the s channel. Now for 0 > v> VL, we 
are within the /-channel Lehmann ellipse, and so the 
appropriate procedure for t<tz> is to expand in the 
partial waves of that channel: 

AtT(t,s)=Y, (2V+l)lmAv
I G-> PA l+ -

2s 

( ^ 4 ) 
(13) 

This gives us Ai^L){v) through Eq. (II).18 

To find AiI(H) (v) we shall assume that the amplitude 
for t>tD is dominated by the top-level Regge pole in 
the s channel. Lower level poles can be brought in in 
the same way, however. Thus, in this region we have15 

Ai(s,t) = -
7rO(*) + l ] ^ ) 

Pa (s) 

21 

2 sin7ra (s) 

+ ( - i y p a ( . ) [ i -

(5 -4 ) 

It 

(*-4) 
(14) 

where a(s) is the position of the pole of Ai'(v) in the 
I plane and @(s) its residue. From Eq. (14) the absorp
tive part for t>tjy is then 

!/((,*) = frl2a(s)+lMs)P«U)V+2t/(s-4:)). (15) 

To get an explicit expression for AiI<-a)(v) we use the 
fact that, since ID is large, we can use the approximations 

P a ( l+2/ / ( j -4))=aCi(a)(</2^)«, (16) 

Q,(l+2t/(*-4))=*C*(0(*/2!0-'-1, (17) 

G(a)=[2«r(a+!)]/[y'2r(«+i)], (18) 

c2a)=[7r1'2r(/+i)]/[2'+1ra+f)]. (19) 

where 

If we make these approximations on substituting Eq, 
(15) into Eq. (12), we obtain 

Al
I^{v)=-vl{2a+\) 

P Ci(a)Ci(l)/tD\ 

va a—I \kJ 
(20) 

where £0= 2. This expression can be continued to regions 
where the original integral diverges. 

The Regge hypothesis also enables us to compute 
RiT(v) for v> (fo/4) since the amplitude there is domi
nated by Regge poles in the t and u channels. To ob
tain their contribution to the partial-wave amplitude, 

18 An alternative procedure would be to use some low-energy 
Regge expansion, such as the one proposed by N. Khuri, Phys. 
Rev. 130, 429 (1963). This would probably be much more com
plicated to use, however. 

it is convenient to use the representation 

AiT{v)=- dzPl{z)AI{sy-2v{\-z)) 
2 i_ i 

sin7rZ 
dzQl(-z)AI(s,~-2v(l-~z))J (21) 

which has been shown by Frazer to be equivalent to 
Eq. (8).19 Thus, the contribution of a Regge pole is 

^ 7 M = £ — - / & , P I ( i + - u ^ ' , 4 ( v + i ) ) 
i' v l2 7__4, \ 2vl 

siiiTr/ r~*v I V \ 1 

where A1'(t,s) is here understood to be given by Eq. 
(14). The extra factor of 2 comes from the fact that 
both t- and ^-channel Regge poles are contributing. If 
we now substitute Eq. (22) into Eq. (2) we can find 
RiT{v) for J O ( / D / 4 ) in terms of the ft and a. The 
elastic approximation RiT(v)cml can always be used in 
the region v< ( / D / 4 ) . 

If we know the /3 and a, we now see that we have a 
self-consistency situation for the low-energy partial-
wave amplitudes. We can assume certain forms for 
the Irm4/(*>), which when substituted into Eq. (13) 
enable us to evaluate AiIiL)(v) through Eq. (11). This 
may then be added to Eq. (20) and the general ap
proach of the preceding section may be used to calcu
late Aiz(v) for v>0. Self-consistency then requires 
that the assumed forms for Im^4z

J(v) be the same as 
these calculated forms. This should be sufficient to 
determine the low-energy amplitude. 

IV. EVALUATION OF REGGE-POLE TRAJECTORIES 

In the preceding section a method for obtaining the 
low-energy amplitude self-consistently was given, as
suming the values of (5{s) and a(s) for small negative 
values of v. However, these functions can also be 
calculated if we follow the procedure of the preceding 
two sections for unphysical values of L Then a point 
l=a(sp) on the Regge trajectory can be found by 
calculating the value s=sv for which 

D«(sp)
I(vp) = 0, (23) 

where vp— (sp/4)~ 1. The value of /3(sp) can be de
duced by first finding the residue of the corresponding 
pole of HiT(v) in the v plane for l=a(sp). This is just 

r « ( . p ) ' = -Nai.J(rp)ldDai,p)*M/drl,^-\ (24) 

The residue of the corresponding pole in AiT(v) in the 

] W. Frazer (unpublished—the result is presented in Ref. 9). 
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I plane is then 

^sp)^vp^Kvv~VK)l-^)TaUp)
Ilda{v)/dv']v=Vp. (25) 

The above method can, of course, only be used for 
V>VL, since there is no way of finding N(p) for V<VL. 

Moreover, in practice we can calculate only a few 
points on the trajectory anyway. However, we can 
always extrapolate a (s) and fi(s) away from these 
points. One way of doing this is to use the fact that 
for nonintersecting trajectories we can always write20 

1 r00 ImaOO 
a(s) = a0+- / dsf- , (26) 

TV J A S' — S 

b(s) = h+~ / ds' , (27) 
IT J 4 S' — S 

where b(s) = v~Ci(s)P(s)} and do and bo are real constants. 
Since we are only interested in values of s<4, we may 
make the substitution %—s'-1, and approximate the 
kernels in Eqs. (26) and (27) in the same way that we 
approximated the kernel in the N function. This leads 
to 

™ di 

a(j) = « o + E , (28) 
i=l Vi~V 

m bi 

*W = *o+Z , (29) 
*=i v%—v 

where the vi are determined by making the kernel 
approximation as good as possible. Moreover, as dis
cussed by Chew,9 the fact that \ma{s) and Im6(,y) are 
small over a fairly large range above threshold effec
tively shifts the lower limit on the integral to a much 
higher value. Thus, it is necessary to approximate the 
kernel in a much smaller region, which reduces the 
number m considerably. The real constants ai and bi 
can then be calculated by fitting Eqs. (28) and (29) 
to m points on the trajectory. These points would be 
determined in the manner described in the preceding 
paragraph. The most convenient values are those 
which lie in the region VL<V<0, since a(s) and b(s) 
are real in this region. In practice, however, we may 
choose any values for which Ima and Imb are small. 

If we require that the calculated parameters of a 
and p be the same as the assumed values, we should 
be able to calculate these functions. Now in the last 
section we saw how the low-energy amplitude can be 
calculated at the same time. Thus, we have an ex
tended "bootstrap" situation, whereby we can calcu
late self-consistently both the low-energy partial-wave 
amplitudes and the parameters of the Regge trajec
tories simultaneously. The latter, of course, give the 
low-momentum transfer amplitude at high energies.15 

V. j!>-WAVE RESONANCE 

We shall now use a rather crude version of the above 
method to make a self-consistent calculation of the 
p meson. In evaluating A^L)(v), we drop everything 
in the expansion (13) except a zero-width ^-wave 
resonance at V—VR. This means that the left-hand cut 
starts at V——VR—\. Thus, if we take VL——VR—\, 

the integral in Eq. (7) will be zero. 
The kernel approximation (6) will be made exactly 

as in I, i.e., we use a straight-line interpolation through 
xi=0.16 and #2=0.02, for which n=2. The zero-width 
resonance is also set up as in I, i.e., we put ReDi1^) 
— {V—VR)/(VQ—VR) and N^(V)C^N^{VR), which leads 

to 

(Wiy/O'+i)]1'2 

ImHx1 (v) = , (30) 
( ^ - ^ ) 2 + ( r i 1 ) 2 [ ^ / ( " + i ) ] 

with 
R e / V f o H O (31) 

and 
Ti^ivR-voWivB). (32) 

Equation (30) can now be approximated by a delta 
function, the integral over which is equal to the in
tegral over Eq. (30) in the limit of small IV. This gives 

l ime? (v) = TTIYS (v- vB), (S3) 

which, together with Eqs. (9), (11), and (13), leads to 

VRTI1/ V+1\ ( vR+l\ 
i4i1<L>W = 12/311 ( 1 + 2 W l + 2 ) . (34) 

V \ VR I \ V I 

To evaluate A^H)(v), instead of using Eqs. (28) 
and (29) we shall make the usual cruder but simpler 
assumptions that21 

Ci(a) (2a+1) (p/v°)« const, (35) 

R e a « l + € ( * - i ^ ) , (36) 

where e and VA are constants (see Fig. 1). For the p 

trajectory, which dominates in the 1=1 state which 
we are considering here, VA=VR. Then if we equate 
the left-hand side of Eq. (35) to its value at V=VA, 
neglect Ima, and use Eq. (25) to evaluate ft we get 

Alwn(v) = __l\ . ( 3 7 ) 

VR—v\hJ 

I t is interesting to note that the first factor in this 
expression is exactly the same as the one that would 
be obtained by using the Singh-Udgaonkar approxi
mation12 and keeping only the contribution of a zero-
width p-w&ve resonance to the ^-channel absorptive 
part. Since /O<3C^D, however, the second factor is not 
even roughly unity. This may explain why the Singh-

20 V. Singh, Phys. Rev. 127, 632 (1962). 
21 B. M. Udgaonkar and M. Gell-Mann, Phys. Rev. Letters 8, 

346 (1962). See also Ref. 15. 
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FIG. 1. Schematic plots of the Pomeranchuk (1 = 0) and the 
p ( / = l ) trajectories, assuming that Eq. (36) holds. The positions 
sp and SfO represent the positions of the p and f° resonances, 
respectively. 

Udgaonkar approximation was not applicable to the 
7r-7r problem. For the TT-N and N-N problems, however, 
to is much larger, and so that approximation should be 
quite reasonable. 

Inelastic effects for v> fo/4) can be estimated by 
the method given in the third paragraph of Sec. I I I . 
This is done in the Appendix, where the approxima
tions made are described in detail. One finally obtains 

RiKvY-
7T2 v(e\n2u)2 

w/ 
at ve ln2z>—2 

(38) 

where at is the total cross section at high energies. 
Equation (38) has the form shown in Fig. 2. To simplify 
the calculation further this was then approximated by 

^^^(vrKT)-1}^!)'(39) 

where 6 is the usual step function. The factor [ ( H - l ) / 
v2112 is essentially unity and is inserted only to simplify 
the evaluation of a certain integral. If we now sub
stitute Eqs. (7) and (39) into Eq. (4), and remember 
that the integral in Eq. (7) is zero, we have 

-[iV^-lj/inO',*-1)}//, (40) + 
where 

2 f / co y « 
/.,(„,«) = — - \ [—-) ln[V/3+ (co- 1)W] 

7r(z>+o;) 

• ( — " ) l n [ ^ 2 + ( v + l ) " 2 ] [ , (41) 

Iin(v,o>) = [ " l n ( - + a > ) - l n ( - -v J 

x(H-w)L \ 4 / V4 / . 

and / / = (l+XiVo^fi for i>0 while 

/ o ' = E i=in(fi-fi'), 
with #o= — VQ~\ 

(42) 

In what follows, we shall take VO=VF= — 2 as in I. 
We shall assume that the 1=0 and 1=1 Regge tra
jectories have the same value of e. If we also assume 
that for the 1=0 trajectory,22 VA= — 1 and that the 
recently discovered / ° particle23 lies on it with spin 2, 
we obtain e = l / 2 0 . From the factorization theorem 
it has been deduced24 that at=15 mb, which gives 
iVOW^) through Eq. (38). In choosing /p, we assume 
that the Regge behavior sets in immediately above 
the resonance region. Since the / ° is the highest known 
resonance in the TT-TT system, we shall thus take /D = 8 0 . 
If we now assume certain values for Ti1 and VR we can 
calculate the fi in the manner described above. This, 
in turn, can be used to find Ti1 and VR through Eqs. 
(7), (40), (31), and (32). We can then vary the as
sumed Ti1 and VR until these are equal to the calculated 
values. Since none of the above equations entail any 
numerical integration, this can be readily done by 
hand and leads to VRTI1= 1.6 and VR = 5.5, which corre
sponds to a mass of 712 MeV. A plot of the partial-
wave cross section, 

(71*= 1 2 T [ > / ( I 4 - 1 ) ] 1 / 2 ImtfxK*'), (43) 

has a half-width of 75 MeV if we use Eq. (30). These 
values should be compared with those deduced from 
pion-production experiments,25 which range from 725 
to 770 MeV for the mass, and 30 to 75 MeV for the 
half-width. 

I t is interesting to note that if we let ID—^00, the 
above problem reduces exactly to the one in I, where 
high-energy effects were completely ignored. The mass 

R > } 

FIG. 2. The function R^iv). The elastic approximation is made 
for *><(£D/4). For V > ( / D / 4 ) the solid line is a schematic plot of 
Eq. (38). The function first drops somewhat but eventually rises 
to infinity logarithmically. The dashed line is a plot of Eq. (39). 
The very high-energy contribution is unimportant. 

22 This is required by the Chew-Frautschi saturation principle. 
See Refs. 5 and 15. 

23 W. Selove, V. Hagopian, H. Brody, A. Baker, and E. Leboy, 
Phys. Rev. Letters 9, 272 (1962); J. J. Veillet, J. Hennessy, H. 
Bingham, M. Bloch, D. Drijard, A. Lagarrigue, P. Mittner, A. 
Rousset, G. Bellini, M. di Corato, E. Fiorini, and P. Negri, ibid. 
10, 29 (1963). 

24 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N. 
Gribov and I. Ya. Pomeranchuk, ibid. 8, 343 (1962). 

25 L. B. Auerbach, T. EKoff, W. B. Johnson, J. Lach, C. E. 
Wiegand, and T. Ypsilantis, Phys. Rev. Letters 9, 173 (1962); 
D. D. Carmony and R. T. Van de Walle, ibid. 8, 73 (1962); J. 
Button, G. R. Kalbfleisch, G. R. Lynch, B. C. Maglic, A. H. 
Rosenfeld, and M. L. Stevenson, Phys. Rev. 126, 1858 (1962), 
to which the reader is also referred for additional references on 
"experimental'' TT-TT scattering. 
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and half-width obtained there were 585 and 110 MeV, 
respectively, if we use Eqs. (30) and (43). These 
numbers do not differ too much from the ones ob
tained above and so the calculation is certainly in
sensitive to the choice of tn. This also justifies the 
assumption made in I that high-energy effects can 
be neglected as a first approximation, at least in the 
7r-7r problem. But, as already pointed out, such effects 
can be quite important in other problems. 

VI. HIGH-ENERGY CROSS SECTION 

In the above calculation <rt was taken from experi
ment. However, it can always be calculated by going 
to the 7 = 0 , 1=1 unphysical "state."10 This time the 
Pomeranchuk (7=0) trajectory dominates in A-p(H)(v), 
and so, in Eq. (36), we take VA= — l.22 Then, if we 
use the relation o-*=47r2jS(0), which can be deduced 
from Eq. (14) with the help of the optical theorem, 
but otherwise follow the same procedure as for the 
p trajectory, we get 

-vert /tDVa+v) 

A?W(y) = — ) . (44) 
4 7 r 2 e ( l + j / ) W 

Assuming that the p is the dominant low-energy con
tribution in the crossed channel, AioiL)(p) will have 
the same form as Eq. (34), except that fin has to be 
replaced by /?oi. For VR and IV we shall take the values 
calculated in the previous section. The function Ri°(v) 
can be easily seen to be exactly the same as Ri1^). 

If one now calculates the /*• as before, one finds that, 
to within about 5%, £>i°(- l) = 0. But from Eq. (23) 
this just means that the calculated a(s) is unity at 
s = 0 . Thus, J M = —1 is the self-consistent value for 
7 = 0 and so the Chew-Frautschi saturation condition22 

comes out of the calculation. If one then calculates 
o-f=4^0(0) through Eqs. (25) and (32) one obtains 
at=15 mb almost exactly. This means that the self-
consistent value for at is essentially equal to the 
"experimental" value deduced from the factorization 
theorem.24 

The only remaining undetermined parameters in the 
problem are e and /#. Now e could be calculated self-
consistently by going to more unphysical "states," but 
this would complicate the calculation considerably. 
However, the value chosen here was such that it gave 
the saturation condition correctly. Thus, if we assume 
that condition, e may be said to have been determined 
also. This leaves tn, which, however, is not an arbitrary 
parameter in the usual sense, since it merely separates 
two regions within which two different approximations 
are made. In fact, if the low-energy region is syste
matically improved by bringing in more partial waves, 
increasing n, and inserting intermediate-energy inelastic 
effects, one should increase ID at the same time. In 
other words, tjy is merely the point at which the low-
energy approximations can be expected to break down. 

This can generally be estimated on an a priori basis. 
For instance, if only low-energy resonances are kept, 
as in the above, the strip-width estimate of Chew9 can 
always be used, since tD corresponds to the width of 
the strip in Ref. 9. I t gives fo^e-1. If one assumes 
this estimate, one may say that tD has also been de
termined, since the value chosen for tD did satisfy this 
rough relation. 
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APPENDIX: INELASTIC EFFECTS IN THE p WAVE 

At very large values of s, the dominant contribution 
to the amplitude will come from the Pomeranchuk 
Regge pole in the / and u channels.15 From Eqs. (14) 
and (16), the /-channel contribution for s>tD is 

x[2a(0 + l ) ] 
AI(t,s) = fi(f) 

2 sm7ra(/) 

X [ l + r - ( ^ ] C { a ( / ) ] f - J , (Al) 

where vt= ( / / 4 ) - l . ' If we make the assumptions (35) 
and (36), but this time in the t channel, and equate 
the left-hand side of Eq. (35) to its value at vt= vA = — 1, 
we get 

AI(t,s) = 3l3(0)(s/2y+^{taniiret-i} (A2) 

Now, because of the factor 

Az(t,s) will be important only in the region 

M ( i « ) l n ( f c ) < l , 

which for s>tD corresponds to \t\ <20. But in this 
region the approximation tan^TreO—GbreO is valid to 
about 10%. Making, therefore, this approximation and 
setting (.y/2)~2*/, we obtain 

i4 /(/,j) = 6^(0) exp[Je/ ]n2rl{br€t-i). (A3) 

If this is inserted into Eq. (21), the resulting integral 
can be carried out exactly and gives 

A^{v) = fi{0)laR+iaI-]y (A4) 
where 

aR = \ire(Ii+h/2v)J (AS) 

a! = Io+Ii/2v, (A6) 
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1 — exp[~— veln2j>l 
/ o = 4 - , (A7) 

eln2*> 

70—4ẑ  exp[— ẑe ln2*>1 
/ 1 = _ 4 ? ( A 8 ) 

e ln2j> 

7i+8^2 exp[—*>e ln2^1 
I2=-S . (A9) 

e ln2v 

If we note that, for s>tD, [*>/(*>+1)]1/2~1, we ob
tain from Eq. (2), 

4TT2 ai 

Rx1M = , (A10) 

where we have used the relation 0-^=4^(0), which 
can be obtained by combining Eq. (14) with the 
optical theorem. To simplify our result further we 

1. INTRODUCTION 

IT has been shown by several authors1"4 that the 
so called one-meson-exchange model, taking into 

account independent exchanges of one pion, one r\y 

one p, and one co only, gives an excellent approximation 
to the experimentally observed nucleon-nucleon scat-

* Present address: Department of Physics and Astronomy, 
University of Rochester, Rochester, New York. 

1 Riazuddin and M. J. Moravcsik, Phys. Letters 4, 243 (1963). 
2 R. A. Bryan, C. R. Dismukes, and W. Ramsay, Nucl. Phys. 

(to be published). See also, R. S. Mckean, Jr., Phys. Rev. 125, 
1399 (1962); and D. B. Lichtenberg, J. S. Kovacs, and H. 
McManus, Bull. Am. Phys. Soc. 7, 55 (1962). 

3 A. Scotti and D. Y. Wong, Phys. Rev. Letters 10, 142 (1963). 
4 W. Ramsay, Phys. Rev. 130, 1552 (1963). 

could drop all the exponential terms in Eqs. (A7), 
(A8), and (A9). This does not affect the final result 
very much and corresponds to setting the lower limit 
—4i> equal to — <*> in Eq. (21). Such a procedure is 
not unreasonable, since 4*>>80 with s>tD, and AT(t,s) 
is important only in the region | / |<20, as we have 
seen. A further simplification results from the a 
posteriori observation that a#2<3Car2. If we make all 
these approximations, we finally obtain 

7T2 v(e\ji2py 
Rx\v)~ . (All ) 

at ve \x\2v—2 

With <r*=75 mb this gives #i1(W4) = 5.31. If we did 
not drop ai we would get ^ I 1 ( / D / 4 ) = 5.28. These two 
are practically indistinguishable. The latter value was 
the one actually used in the calculations of Sees. V 
and VI. 

tering. In Refs. 2, 3, and 4 it has been necessary to 
postulate the existence of an 1=0 scalar meson or 
resonance of mass 3 to 4 m* with a rather large coupling 
constant with nucleon. So far, there appears to be 
contradictory evidence on the existence of such a 
meson or resonance. 

The energy involved in the above demonstration of 
the goodness of the one-meson-exchange model is up 
to 350 MeV. On the other hand, it has also been shown 
that high-energy behavior5 of the nucleon-nucleon 
scattering amplitude or cross section can be explained 
in terms of the Pomeranchuk pole, Pf trajectory, and 

5 S. D. Drell, in Proceedings of the 1962 International Conference 
on High Energy Physics at CERN, 1962 (CERN, Geneva, 1962). 
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By considering a dispersion relation for that amplitude of p-p scattering, whose imaginary part in the 
forward direction is related to the total cross section, it is shown that the one-meson-exchange model (taking 
into account independent exchanges of the pion, the p-co vector pair, and an / = 0, scalar 2TT resonance or 
meson with a mass somewhat#greater than two pion masses) and high-energy behavior of the p-p and p-p 
scattering cross sections as given by the Regge pole hypothesis, are consistent with the existing p-p scattering 
data. In our demonstration the energy range involved is larger than previously used in the demonstration 
of either of the above two aspects of p-p scattering. Further by considering a dispersion relation and high-
energy behavior of another amplitude of p-p scattering, it is shown that the second type of coupling of the 
Pomeranchuk pole is zero. This reduces the number of unknown parameters in the expression for polarization 
at high energy. 


